2019 – Data Mining and Risk Analysis Supporting Decision in Brazilian Public Health System

Date of Conference: 14-16 Oct. 2019
Date Added to IEEE Xplore27 February 2020
 ISBN Information:
Publisher: IEEE
Conference Location: Bogota, Colombia, Colombia

Abstract:

Health data monitoring is a crucial activity to reduce maternal, neonatal and infant mortality rates. Available data in Brazilian health databases point that It is possible to predict death risk in the early stages of gestation and infant development. In this research, we consider the information availability still in the gestational period to propose different death risk prediction models for this public of interest. We also detail the data mining process to apply machine learning-based techniques in death risk classification for maternal, neonatal and infant patients. We present an experiment pipeline to estimate average performance and evaluated machine learning models with different features combinations. Additionally, we show a web service which provides multiple predictive models by information availability. Results show Random Forest obtaining better performance when compared to the other machine learning methods.

Esse post foi publicado em 2. Artigos CIENTÍFICOS. Bookmark o link permanente.

Deixe um comentário

Preencha os seus dados abaixo ou clique em um ícone para log in:

Logo do WordPress.com

Você está comentando utilizando sua conta WordPress.com. Sair /  Alterar )

Imagem do Twitter

Você está comentando utilizando sua conta Twitter. Sair /  Alterar )

Foto do Facebook

Você está comentando utilizando sua conta Facebook. Sair /  Alterar )

Conectando a %s